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Abstract: The properties of the Joule–Thomson coefficient are discussed in general for pure gases, and the 
possibility of a nonlinear effect in binary mixtures is analyzed using the First Law of Thermodynamics and some 
common cubic equations of state. It is shown that although theoretically a binary mixture of gases may exhibit a 
Joule–Thomson effect different from the molar-weighted mean of the pure-component effects, the possibility of 
observing a positive difference is very low. 

Introduction 

Consider the steady-state flow of a fluid down a heavily 
insulated duct that contains a restriction to the flow (Figure 1). 
This restriction might be some type of porous plug, a slightly 
opened valve, an orifice, or a long and narrow capillary tube. 
In general, a process in which a gas is made to suffer a loss of 
pressure on passing a constriction is referred to as throttling. 

The work interaction and the changes in kinetic and 
potential energies within the control surfaces 1 and 0 may be 
considered negligible. It is easy to see that the material moving 
along a flow line going directly through the hole will take the 
shortest time to cross the obstruction; all other flow lines will 
collide with the vertical plate and change their direction 
several times until they are able to cross the restriction. In 
addition, because the mass flow is constant, the stream 
velocity will increase when going through the hole, and then at 
a certain distance after the obstruction it will decrease to the 
same value it had upstream of the hole. The changes in 
direction of the flow lines and of the stream velocity will be 
reflected in turbulent wakes on both sides of the obstruction. 
The presence of turbulence will result in a decrease in the 
available energy for doing work, making the process of flow 
through a restriction internally irreversible. It should also be 
noted that it is impossible to increase the pressure by means of 
adiabatic throttling, and that P0 will always be smaller than P1 
for all substances. The first law for a steady state process is 

 Q W H KE PE
⋅ ⋅

− = ∆ + ∆ + ∆! ! !  (1) 

in units of energy time
–1

 and 

 q w h ke pe
⋅ ⋅

− = ∆ + ∆ + ∆!! !  (2) 

in units of energy mass
–1

 time
–1

. In equation 1, ∆KE and ∆PE 
are the changes in kinetic and potential energy, respectively, 
and Q is considered positive for heat entering the system. If the 
control surfaces are located far enough upstream and 
downstream of the restriction, then the flow lines are parallel 
to each other. Application of equation 2 to control volume 1-0 
under these conditions yields 

 h0 = h1 (3) 

Equation 3 should be interpreted properly: it indicates that 
the enthalpy in state 1 is equal to the enthalpy in state 0, but it 
does not indicate that the process is isenthalpic. Because of 
irreversibility the process is actually not isenthalpic. 

We will now proceed to analyze in detail the characteristics 
of the phenomenon and determine what makes it important, 
not only theoretically, but also industrially. To do so let us 
assume that we perform the following two series of 
experiments. First, we keep the upstream conditions constant 
while varying the degree of opening of the restriction. 
Although each equilibrium state 0 will have a different 
pressure, P0, all the possible states will have the same enthalpy 
as indicated by equation 3. During such experiments it will be 
observed that, depending on the nature of the fluid and the 
upstream conditions, the downstream temperature, T0, will be 
sometimes lower and sometimes higher than the upstream 
temperature, T1. If the variations of the degree of opening are 
made sufficiently small, the points will be close enough to 
draw a continuous curve, which can be assumed to be 
isenthalpic. In the second series of experiments we use a given 
opening but change the upstream conditions. The results 
appear in Figure 2 where it is seen that the behavior of the 
curve will vary substantially depending on the value of the 
initial upstream enthalpy. Above a certain value, hmax, of the 
enthalpy, the isenthalpic curves all ascend monotonically in 
the direction of decreasing pressure. For values of h < hmax, the 
curves now exhibit a characteristic maximum, all maxima 
forming a locus, shown in the figure and known as the 
inversion curve. Again, below a certain value, hmin, of the 
enthalpy, the maximum will disappear and the curves will 
show the same general behavior as that for which h > hmax. As 
will be shown below, the inversion curve can be described by 
an empirical function, ϕ(Ti, Pi) = 0, between the inversion 
temperature and the inversion pressure. 

The Adiabatic Joule-Thomson Effect. The change in 
temperature, ∆TH  = T0 – T1, associated with throttling is 
referred to as the Joule–Thomson effect. When the pressure 
drop (P0 – P1) is large it is customary to speak of the integral 
Joule–Thomson effect, whereas the differential Joule–
Thomson effect is said to occur when this difference is 
extrapolated to zero. In the latter case the magnitude and 
direction of the effect is described by the adiabatic Joule-
Thomson coefficient, µ. 
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Figure 1. Throttling process. 

 
Figure 2. Throttling experiments conducted under different upstream 
conditions and restriction intensities. 

 
H

T

P

δµ
δ
 

≡  
 

 (4) 

The difference between the differential and integral Joule–
Thomson effects can be visualized with the help of Figure 2. 
Consider a throttling process that begins from point A. The 
differential Joule–Thomson effect corresponds to the local 
slope of the curve at point A and will vary from the original 
slope to the slope at the final pressure. The integral Joule–
Thomson effect represents the total temperature change during 
a finite pressure drop. As seen from Figure 2, the value of µ 
may be positive or negative. Levine [1] indicates that typical 
values of µ for pure gases range from +3 to –0.1 K, depending 
on the gas and on its initial temperature and pressure. From its 
definition (µ = 0) it follows that the inversion curve separates 
those states for which µ < 0 (outside) from those for which 
µ > 0 (inside). Thus, there exists a maximum inversion 

temperature, max
invT , at P = 0, which is obtained by 

extrapolation to zero pressure. The inversion curve, on the 

Table 1. Maximum Inversion Temperature, K, for Various 
Gases 

Gas max
invT  

Helium - 3 40 
Hydrogen 205 
Neon 270 
Air 603 
Nitrogen 625 
Argon 723 
Oxygen 750 
Krypton 1050 
Xenon 1290 

 
other hand, passes through a maximum pressure, max

invP , for a 

temperature that depends on the nature of the gas. At pressures 
greater than max

invP , µ is always negative. Consider now a 

throttling process represented by point A on curve h1; 
depending on the downstream pressure, the temperature of the 
gas may increase (point B), may remain the same (point C), or 
it may decrease (point D); remember that all the points are 
located in the same isenthalph. In other words, if we want to 
cool the gas it is necessary to expand it to a pressure below 
that of point D. Values of the maximum inversion temperature, 

max
invT , for several gases are given in Table 1. It is seen that for 

most gases the maximum inversion temperature is higher than 
room temperature and that it is lower only in the case of 
hydrogen and helium. This characteristic is particularly 
important for hydrogen supply lines, owing to the explosive 
nature of hydrogen and atmospheric oxygen. When a leak 
occurs in a supply line, the gas is subject to a throttling effect, 
and, in the case of hydrogen, this leads to a discharge of heated 
gas into the atmosphere creating favorable conditions for an 
explosion. 

From the industrial viewpoint, the integral Joule–Thomson 
effect is the most interesting because it has units of 
temperature and expresses the overall cooling (or heating) that 
takes place when a fluid passes through a restriction. Most of 
the interest in the Joule–Thomson effect is due to its practical 
application in the liquefaction of gases, cryogenic coolers, and 
refrigeration equipment. If the upstream fluid is in a saturated 
liquid state, the drop in pressure through the restriction will 
result in evaporation of part of the  liquid with the 
corresponding  large heating (cooling) effect. 

The Joule–Thomson experiment also provides information 
that can be used to examine the nature of intermolecular forces 
operative between pure gases or their mixtures. The Joule–
Thomson  inversion curve has often been used to test 
equations of state at temperatures and pressures above the 
critical values. The test is rather severe because, as shown by 
equation 7 below, the derivatives of the volume are involved. 

We can use the chain rule to derive a working expression for 
the Joule–Thomson coefficient: 

 
H P T

T T H

P H P

δ δ δµ
δ δ δ
     ≡ = −          

 (5) 

but, by definition 
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Figure 3. (a) Variation of the second virial coefficient, B, of CO2 with 
temperature; (b) the solution to equation 15 for CO2. 

 P
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δ
δ
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and from the Maxwell relations [1]. 

 
T P

H V
V T

P T

δ δ
δ δ

   = −      
 (6) 

so that 

 
1

PP

v
T v

C T

δµ
δ

  = −    
 (7) 

Thus, the Joule–Thomson coefficient may be calculated 
from a knowledge of the PVT relationship of the fluid 
(equation of state) and the specific heat at constant pressure. If 
equation 7 is applied to an ideal gas we get µideal

 = 0, hence an 
ideal gas undergoes no change in temperature upon throttling. 
This is not surprising because it is known that the enthalpy of 
an ideal gas is solely a function of the temperature. Let us now 
use equation 3 to investigate the effect of throttling on an 
incompressible fluid. Equation 3 may be written 

 1 1 1 0 0 0u Pv u P v+ = +  (8) 

Rearranging and taking into account that the fluid is 
incompressible (v1 ≈ v0 = v) 

 ( )0 1 1 0u u v P P− = −  (9) 

and because P1 – P0 > 0 we get 

 u0 > u1 (10) 

In other words, throttling of an incompressible fluid will result 
in an increase in the temperature. 

Calculation of the Maximum Inversion Temperature 

It is of interest so see how the maximum inversion 
temperature, max

invT , can be calculated from an equation of state. 

Because by definition it is fixed by the intersection of the 
inversion curve with the T axis, we need first the equation of 
the inversion curve. The equation of the inversion curve is 
µ = 0, hence from equation 7 

 
P

v
v T

T

δ
δ
 =   

 (11) 

Assuming that the behavior of the gas can be described by 
the pressure expansion of the virial equation of state [1], 

 2 31z BP CP DP= + + + +"" " #  (12) 

where z is the compressibility factor (= Pv/RT) and B" , C" , D" , 
… are coefficients that are functions of the temperature alone, 
we have 

 
P

v R dBRT dCRT
P

T P dT dT

δ
δ
  = + + +  

""
#  (13) 

Substituting equation 13 into equation 11 and passing to the 
limit P = 0, we find that max

invT  occurs when 

 
BRT dBRT

T dT
=

" "
 (14) 

Equation 14 can be written in a more compact form 
recalling that the coefficient B"  is related to the second virial 
coefficient  B  by  the  simple  relation  B = B" RT  [1], so  that 

 
B dB

T dT
=  (15) 

In other words, the maximum inversion temperature can be 
found by drawing the tangent from the origin to the curve that 
describes the variation of the second virial coefficient with 
temperature (Figure 3b). Miller [2] claims that the Joule–
Thomson inversion curve can be described reasonably well by 
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a two-parameter (Tr, Pr) corresponding states correlation for 
all gases but H2 and He. Several authors [3, 4] have studied the 
capability of the most common equations of state to predict the 
Joule–Thomson inversion curves; however, not many studies 
that estimate the Joule–Thomson coefficient itself have been 
made. Hirose et al. [5] have developed computer programs that 
manipulate the equations of state to develop practical formulas 
for the calculation of the coefficient. The calculation of the 
Joule–Thomson effect at very low pressures has been 
discussed by Rasiel and Freeman [6], who have shown that the 
coefficient of a real gas is generally nonzero in the limit of 
zero pressure. 

The Isothermal Joule–Thomson Coefficient 

The Joule–Thomson experiment can also be performed 
under isothermal conditions. In this case the isothermal Joule–
Thomson coefficient, φ, is defined as  

 
T P

h v
v T

P T
φ ∂ ∂   = = −   ∂ ∂   

 (16) 

Both Joule–Thomson coefficients are related by the simple 
expression, µ = -φ/CP. According to Francis and Luckhurst [7] 
the principle of corresponding states applies to the isothermal 
Joule–Thomson coefficient but does not apply to the 
isenthalpic Joule–Thomson coefficient. 

The Joule–Thomson Coefficient for Gas Mixtures 

All the relations we have developed thus far are general; 
they apply both to a pure gas and to a mixture of gases. Many 
papers report the Joule–Thomson effect of gas mixtures, but 
only a few have addressed the question of whether the effect 
for a mixture of gases is equal to or different from the molar-
weighted mean of the effect for the pure components under the 
same conditions of pressure and temperature. Can the effect be 
larger (synergism) or smaller (depression) than this linear 
combination? For example, Ishkin and Rogovaya [8] measured 
the isothermal Joule–Thomson coefficient for mixtures of 
argon and nitrogen and found that it showed positive 
deviations from the linear additive effect above 0 ºC and at 
low pressures and negative deviations for temperatures below 
0 ºC and high pressures. Koeppe [9, 10] measured the integral 
and differential Joule–Thomson effect for N2 + Ar, N2 + O2, 
O2 + Ar, He + N2, He + Ar, and N2 + H2 mixtures at various 
temperatures and pressures and found that the integrated effect 
was larger or equal to the molar-weighted mean of the 
integrated effects of the constituents. Gunn et al. [11] 
determined the inversion curves for mixtures of methane and 
hydrogen and found that the inversion pressure at 214 K 
plotted against the mole fraction exhibited a maximum. They 
claimed that this phenomenon should be common to those 
binary mixtures whose pure-component critical  temperatures 
are such  that  the  pure-component  reduced  temperatures  lie 
on different sides of the maximum of the generalized curve 
(expressed in terms of reduced variables). Sobanski and 
Kozak [12] studied the throttling behavior of mixtures of 
oxygen + helium, R-114 + ammonia, R-114 + sulfur dioxide, 
and R-170 + nitrogen, as a function of pressure and 
composition and detected the presence of extreme values of 

the differential Joule–Thomson coefficient. For example, for a 
mixture of R-114 and NH3 at 423 K, the differential Joule–
Thomson coefficient showed a sharp maximum value at 4 MPa 
that decreased with pressure and disappeared above 10 MPa. 
The specific heat of the mixture followed a similar behavior 
with the maximum occurring at a higher composition than that 
for µ. Sobanski and Kozak [12] concluded that the specific 
heat of the mixture was the essential parameter that determined 
whether or not there would be an extreme value in the 
coefficient, and that the phenomena was characteristic of 
components with considerable difference in their critical 
parameters. Gustafsson [13] used the virial expression of the 
van der Waals equation of state to analyze the theoretical 
aspects of the problem and concluded that synergism is 
possible. He also discussed the criteria that must be satisfied 
by the constituent gases in order that the mixture has a 
synergistic effect. Wisniak and Abraham [14] analyzed the 
adiabatic Joule–Thomson effect in the low-pressure range 
where only the second virial coefficient is considered, and they 
concluded that none of the equations of state was capable of 
predicting an extremum. 

Synergism in the Joule–Thomson Effect for Binary Gas 
Mixtures 

In order to explore the possibility of a nonlinear effect we 
define a deviation function, δ, as follows [13]. 

 

( ) ( ) ( ) ( )1 H1 2 H2 H,mix, , , , , ,P T y y T T P y T T P T T P yδ = ∆ + ∆ − ∆  

  (17) 

where ∆TH1, ∆TH2 represent the integral Joule–Thomson effect 
for components 1 and 2, respectively, and ∆TH, mix that of a 
mixture of mole fraction y1. From its definition it is seen that δ 
represents the deviation from the molar-weighted mean of the 
pure-component effects. For most pure gases the integral 
Joule–Thomson effect, ∆TH,i is negative, hence a positive value 
of δ will indicate the presence of a synergistic effect. 

The possibility of synergism will be analyzed by developing 
an expression for the deviation function, δ. Assuming the 
enthalpy to be a function of pressure and temperature, we can 
write 

 P
T

h
dh c dT dP

P

∂ = + ∂ 
 (18) 

Integrating from the upstream state (P1, T1) to the 
downstream state (P0, T0) and applying the condition, ∂h = 0, 
we get 

 ( ) ( )
0 0

0

1 1

0, , 0
T P

P

T P

c y P dT y T dPφ+ =∫ ∫  (19) 

In order to calculate the isothermal Joule–Thomson 
coefficient, φ, we will use the virial expansion as a pressure 
series 
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 1

1

k
k

k

Pv
B P

RT

∞
−

=

=∑ "  (20) 

Using equations 19 and 20 we get 

 ( )
0

2
1 11

H 1 0
2

1

1
k kk

kP

dBRT
T P Pk

c dT k

∞
− −

=

 
∆ = − −  − 

∑
"

 (21) 

where 
0Pc  is the heat capacity at the low pressure P0 (assumed 

to be constant). 
If we limit our analysis to the pressure range where the virial 

equation can be truncated after the second term and remember 
that B = B" RT, we can transform equation 21 into the 
following expression. 

 ( ) 0 02 1

0 0 01 2

2
1 2

1 0 11 22 12

1
2

m

P P

P P P

c cy y T d
P P B B B

c dt T c c
δ

  
  = − + −

    
 

  (22) 

where 
0m

Pc is the molar-weighted mean of the heat capacities 

of the pure components at the low downstream pressure. 
Equation 22 may be written in the more compact form 

 ( )
0m

1 2
1 0

P

y y
K P P

c
δ = −  (23) 

where 

 0 02 1

0 01 2

2
11 22 12

1
2

P P

P P

c cd
K T B B B

dt T c c

  
  = + −

    
 (24) 

is a function of the temperature only. For constant pressure and 
temperature, δ will have an extreme value for the following 

value of the composition, 1y
∗

: 

 
0 0 02 1 2

01
0 01 2

02

1 1

1

1 P

P

P P P

C
P P

C

c c c
y y

c c

∗ ∗− ±
= =

− +
 (25) 

δ will be a maximum if K in equation 24 is negative and a 
minimum if K is positive. 

We will now develop a working expression for µ0, the 
Joule–Thomson coefficient at zero pressure. At sufficiently 
low pressures the virial equation becomes 

 1 1
Pv BP

BP
RT RT

= + = +"  (26) 

Using this expression in equation 7 we get 

 
( )

0 0

2

0

/1

P P

d B TdB T
B T

c dT c dT
µ  = − − =  

 (27) 

The second virial coefficient of a binary mixture is [15] 

 2 2
1 11 2 22 1 2 122B y B y B y y B= + +  (28) 

where B12 is the mixed coefficient. Equation 27 then becomes 

 ( )
0m

2 2
0 1 0,11 2 0,22 1 2 0,12

1
2

P

y y y y
c

µ φ φ φ= − + +  (29) 

where 

 
( )2

0,

/ijij
ij ij

d B TdB
B T T

dT dT
φ = − = −  (30) 

is the limiting value of φ at zero pressure. µ0 will have an 
extreme value when 

 0,22 0,12
1

0,11 0,22 0,22

y
φ φ

φ φ φ

∗ −
=

+ −
 (31) 

Because 0 < y1 < 1, the extreme value will be a maximum if 
the following conditions (equations 32) are met. 

 φ0,12 < φ0,11 and φ0,12 < φ0,22 (32) 

Equations 22 and 29 can easily be used to calculate the 
deviation function and the isenthalpic Joule–Thomson effect at 
zero pressure with common equations of state like those of van 
der Waals, Redlich–Kwong, Soave, and Peng–Robinson [16]. 
All these are cubic equations that have the following general 
structure 

 
2

RT a
P

v b v cv d
= −

− + +
 (33) 

and can be expressed in virial form using the following 
relations for the second, third, and fourth virial coefficients 
[15]. 

 
a

B b
RT

= −  (34) 

 2 ac
C b

RT
= +  (35) 

 
( )2

3
a d c

D b
RT

−
= +  (36) 

Most methods for treating thermodynamic properties of gas 
mixtures make the basic assumption that equations of state for 
mixtures have the same form as the equations that describe the 
component species. In this case the parameters of the equation 
are obtained by a combination of the constants of the 
components (mixing rule). The parameters are a function of 
the critical constants and the proper functionality is well 
reported in the literature [1, 15]. 
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We will illustrate the calculation procedure in detail for the 
van der Waals equation [16]. The van der Waals equation can 
be written in the following virial form [15]. 

 
2 3

2 3

1
1

Pv a b b
b

RT RT v v v
 = + − + + +  

#  (37) 

Thus, the second virial coefficient is 

 vW

a
B b

RT
= −  (38) 

Assuming that equation 38 describes Bii and Bij using the 
mixing rules suggested by van der Waals 

 12 11 22a a a=  (39) 

equation 22 becomes 

( )

( )

0

02 01

02 01

02 01 01 02

1 2
1 0

20.5 0.5

22 11
11 22

2

m

vW
P

P P
P P

P P P P

y y
P P

c

c cb b
c c a a

c c RT c c

δ = −

         − − + −                    

 

  (40) 

Equation 40 may be written in the same compact form as 
equation 22 

 ( )
0

1 2
vW vW 1 0

m
P

y y
K P P

c
δ = −  (41) 

where 

( ) 0 02 1

0 02 1

0 0 0 02 1 1 2

vW

20.5 0.5

22 11
11 22

2 P P

P P
P P P P

K

c cb b
c c a a

c c RT c c

=

              − − + −               

 

  (42) 

Finally, using equations 29 and 30, we obtain the following 
expression for µ0, the zero-pressure Joule–Thomson 
coefficient. 

( )
0m

2

0,vW 1 11 2 22 1 11 2 22

1 2

P

y b y b y a y a
c RT

µ  = − + − +  
 (43) 

µ0,vW will have an extreme value for (equation 31) 

 
( ) ( )

( )

2

11 22 22 11 224

1,vW 2

11 22

RT b b a a a
y

a a

∗ − − −
=

−
 (44) 

subject to the restriction 0 < 1y
∗

 < 1. 

Application of the above procedure to other cubic equations 
of state yields the interesting result that all expressions for δ 
have the compact form given by equations 22 and 41. The 
particular equation of state is identified by the pertinent 
expression for K as follows: 

Redlich–Kwong. 

 

( )0 02 1

0 01 1

0 02 1

0 01 2

22 11
RK

20.5 0.5

11 221.5

2.5

P P
P P

P P

P P

b b
K c c

c c

c c
a a

RT c c

 
 = − − +
  

    
    −
        

 (45) 
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0m

0,RK

2

1 11 2 22 1 11 2 221.5

1 2.5

P

y b y b y a y a
c RT

µ =

 − + − +  
 (46) 

 

( ) ( )
( )

1.5

11 22 22 11 225

1,RK 2

11 22

RT b b a a a
y

a a

∗ − − −
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Soave. 
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where 

 2
S 0.48508 1.55171 0.15613ar arβ = + −  (49) 
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  (50) 

Peng–Robinson. The second virial coefficient of the Peng–
Robinson equation has the same structure as that of Soave 
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Table 2. Predicted Values of the Deviation Function, δ, at 300 K for a Pressure Drop of 0.202 MPa 

Mixture van der Waals Redlich–Kwong Soave Peng–Robinson 

nitrogen/oxygen 7.9 × 10-4 -5.1 × 10-3 -8.6 × 10-3 -4.6 × 10-3 
argon/oxygen -0.169  -0.158 -0.169  -0.210 
nitrogen/carbon monoxide -1.6 × 10-3 -2.6 × 10-3 -2.9 × 10-3 -3.1 × 10-3 
carbon dioxide/ethylene  -0.106  -0.092 -0.042  -0.148 
nitrogen/helium -0.996  -1.034 -0.097  -0.402 
methane/ethane -0.273  -0.550 -0.609  -1.416 
krypton/hydrogen -0.941  -1.142 -1.139  -1.378 

 
equation, except that the expression for β (see equation 49) is 
as follows. 

 2
PR 0.37464 1.54226 0.26992 ar arβ = + −  (51) 

As previously stated, the δ expression for all four equations 
of state has the structure given by equation 41; thus, all of the 
equations predict the same composition at which an extreme 
value of δ may occur. The nature of the extreme value 
(maximum or minimum) will be a function of the intensity of 
K and hence of the nature of the equation of state. Defining 
F(y) as 

 ( )
0 01 2

1 2

1 2P P

y y
F y

y c y c
=

+
 (52) 

we obtain the value for the function at the extreme point 

 ( )
0 01 2

2

1

P P

F y
c c

∗ =
+

 (53) 

the function F(y) will be nil at y = 0 and y = 1. 
The values of δmax predicted by the four equations of state 

have been calculated for some typical binary mixtures and the 
results given in Table 2. It can be seen that, within the pressure 
range considered, all four equations of state predict that 
synergism will be present in mixtures of nitrogen and methane, 
although the effect is very small. None of the equations of 
state is capable of predicting an extreme value for the zero-
pressure differential Joule–Thomson coefficient; in every case 

the calculated value of 1y
∗

 falls outside the range 0–1. 

Conclusion 

When a gas flows through a restriction (throttling process), 
its pressure will always decrease but its temperature may 
increase or decrease. This phenomenon, called the Joule–
Thomson effect, has important industrial applications in the 
areas of refrigeration, gas liquefaction, and cryogenics. The 
properties of the Joule–Thomson coefficient were discussed in 
general for pure gases, and the possibility of a nonlinear effect 
in binary mixtures was analyzed using the First Law of 
Thermodynamics and some common cubic equations of state. 
It was shown that, although theoretically a binary mixture of 
gases may exhibit a Joule–Thomson effect different from the 
molar-weighted mean of the pure-component effects, the 
possibility of observing a positive difference is very low. 

Nomenclature 

a constant in an equation of state 
b constant in an equation of state 
B second virial coefficient, volume series 
B"  second virial coefficient, pressure series 
cp specific heat at constant pressure 

F function of composition, equation 52 
H enthalpy 
h specific enthalpy 
P pressure 
R universal gas constant 
T absolute temperature 
TC critical temperature 
Tr reduced temperature, T/Tc 
∆TH integrated isenthalpic Joule-Thomson coefficient, 

equation 17 
V volume 
v specific volume 
y molar composition of gas 

1y
∗

 molar composition of gas at maximum value 

α function in the Soave and Peng-Robinson equations 
β function defined by equations 49 and 51 
δ deviation function, equation 17 
µ isenthalpic Joule-Thomson coefficient, equation 4 
φ isothermal Joule-Thomson coefficient, equation 16 
ω acentric factor 
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